【数Ⅲ-162】区分求積法① - 質問解決D.B.(データベース)

【数Ⅲ-162】区分求積法①

問題文全文(内容文):
数Ⅲ(区分求積法①)

ポイント
$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=1}^{n} f(\frac{k}{n})=\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})=$①


Q.次の極限値を求めよ。

➁$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(\frac{1}{n})^2}+(\frac{2}{n})^2+…(\frac{n}{n})^2\}$

③$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(1+\frac{1}{n})^2}+(1+\frac{2}{n})^2+…(1+\frac{n}{n})^2\}$
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(区分求積法①)

ポイント
$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=1}^{n} f(\frac{k}{n})=\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})=$①


Q.次の極限値を求めよ。

➁$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(\frac{1}{n})^2}+(\frac{2}{n})^2+…(\frac{n}{n})^2\}$

③$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(1+\frac{1}{n})^2}+(1+\frac{2}{n})^2+…(1+\frac{n}{n})^2\}$
投稿日:2020.08.05

<関連動画>

#数学検定準1級2次過去問#69「展開が最短かも」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^4(1-x)^4$ $dx$

出典:数検準1級1次
この動画を見る 

福田のおもしろ数学549〜無理関数の不定積分その2

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

不定積分

$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\sqrt{x^2-1}=t$

と置き換えて求めて下さい。
    
この動画を見る 

大学入試問題#561「不定積分だと難易度爆上げ」 東京帝国大学(1930) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x\sqrt{ 1-x^2 }}$

出典:1930年東京帝国大学 入試問題
この動画を見る 

17岡山県教員採用試験(数学:5番 積分)

アイキャッチ画像
単元: #積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
この動画を見る 

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP