問題文全文(内容文):
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.
2022大阪大過去問
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.
2022大阪大過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.
2022大阪大過去問
$\cos\dfrac{2}{7}\pi,\cos\dfrac{4}{7}\pi,\cos\dfrac{6}{7}\pi$を解にもつ3次方程式
$x^3+ax^2+bx+c=0$を求めよ.
ただし,$z^7=1$とする.
2022大阪大過去問
投稿日:2022.03.02