【数学】中3-48 相似の証明チャレンジ Lv.3 - 質問解決D.B.(データベース)

【数学】中3-48 相似の証明チャレンジ Lv.3

問題文全文(内容文):
◎$\triangle ABC$は三角形でDEを折り目にして点Aが点Fに重なるように折る。
このとき、$\triangle DBF ∞ \triangle FCE$であることを証明しよう!

【宣言】
$\boxed{1}$_____________で

【理由】
$\boxed{2}$______より$\boxed{3}$_______ ・・・①
$\boxed{4}$_____________________より
$\boxed{5}$_____________________
また、$\boxed{6}$_____________________なので
$\boxed{7}$_____________・・・②

【相似条件】
①、②より
$\boxed{8}$_________________________ので

【結論】
$\boxed{9}$_____________
※図は動画内参照
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\triangle ABC$は三角形でDEを折り目にして点Aが点Fに重なるように折る。
このとき、$\triangle DBF ∞ \triangle FCE$であることを証明しよう!

【宣言】
$\boxed{1}$_____________で

【理由】
$\boxed{2}$______より$\boxed{3}$_______ ・・・①
$\boxed{4}$_____________________より
$\boxed{5}$_____________________
また、$\boxed{6}$_____________________なので
$\boxed{7}$_____________・・・②

【相似条件】
①、②より
$\boxed{8}$_________________________ので

【結論】
$\boxed{9}$_____________
※図は動画内参照
投稿日:2013.09.14

<関連動画>

【定石が唯一ではない…!】因数分解:國學院大學久我山高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)#國學院大學久我山高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x^2-4y^2+8y-4$
$を因数分解せよ。$
この動画を見る 

【数学】中3-7 因数分解②

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
この動画を見る 

【テスト対策 中3】6章-2

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさを求めなさい。点$O$は円の中心、点$T$は接点とする。

図①~④は動画内参照
この動画を見る 

4つの正方形

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 数学を数楽に
問題文全文(内容文):
次の図のx,yの面積の合計を求めよ。
(図は動画参照)
この動画を見る 

shape problems : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数学(中学生)#中3数学#三平方の定理#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
半径が$1$cm, $2$cm, $3$cmの同心円。
半径$3$cmの円の弦が、半径$1$cmの円と点Rで接している。
弦の実線部分PQの長さは$\fbox{$\hskip5em\Rule{0pt}{0.8em}{0em}$}$cmである。
この動画を見る 
PAGE TOP