福田の数学〜青山学院大学2023年理工学部第4問〜関数の増減と実数解をもつ条件 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2023年理工学部第4問〜関数の増減と実数解をもつ条件

問題文全文(内容文):
$\Large\boxed{4}$ (1)関数
$y$=$\displaystyle-\frac{\cos3x}{\sin^3x}$ (0<$x$<$\pi$)
の増減と極値を調べ、そのグラフの概形を描け。ただし、グラフの凹凸は調べなくてよい。
(2)$a$を実数の定数とする。$x$についての方程式
$-\cos3x$=$a\sin^3x$
が$\displaystyle\frac{\pi}{6}$<$x$<$\displaystyle\frac{2\pi}{3}$の範囲に実数解をもつような$a$の値の範囲を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)関数
$y$=$\displaystyle-\frac{\cos3x}{\sin^3x}$ (0<$x$<$\pi$)
の増減と極値を調べ、そのグラフの概形を描け。ただし、グラフの凹凸は調べなくてよい。
(2)$a$を実数の定数とする。$x$についての方程式
$-\cos3x$=$a\sin^3x$
が$\displaystyle\frac{\pi}{6}$<$x$<$\displaystyle\frac{2\pi}{3}$の範囲に実数解をもつような$a$の値の範囲を求めよ。
投稿日:2023.09.05

<関連動画>

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る 

和歌山大 微分 2接線の直交条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$C:y=x^3-kx$
C上の点Pにおける接線がCと点Qで交わり、Qにおける接線と直交する。
実数kの範囲を求めよ。
この動画を見る 

東北大 積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6ax^2+bx+1$
$x=a(a \gt 0)$で極大値
$f(x)$と直線$y=f(a)$で囲まれた面積が$a^2$
$a$の値を求めよ

出典:1996年東北大学 過去問
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(2)\\
\sqrt x+\sqrt y \leqq k\sqrt{2x+y}\\
が任意の正の実数x,yに対して成り立つような実数k\\
の値の範囲を求めよ。
\end{eqnarray}
この動画を見る 

名古屋大 微分 複雑な方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ

(2)
$2^x=x^2$実数解の個数を求めよ

(3)
$2^x=x^2$の有理数解をすべて求めよ

出典:2015年名古屋大学 過去問
この動画を見る 
PAGE TOP