大学入試問題#920「工夫しがいがある問題」 - 質問解決D.B.(データベース)

大学入試問題#920「工夫しがいがある問題」

問題文全文(内容文):
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$

出典:1963年 一橋大学
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$

出典:1963年 一橋大学
投稿日:2024.08.31

<関連動画>

【高校数学】恒等式とは?分かりやすく~どこよりも丁寧に~ 1-7【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(5)〜整式の割り算の余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)整式P(x)を
P(x)=$\displaystyle\sum_{n=1}^{20}nx^n$=20$x^{20}$+19$x^{19}$+18$x^{18}$+...+2$x^2$+$x$
と定める。このとき、P(x)をx-1で割った時の余りは$\boxed{\ \ ク\ \ }$である。
また、P(x)を$x^2$-1で割った時の余りは$\boxed{\ \ ケ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 

成城大 ド・モアブル証明 6倍角の公式?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos\theta+i\sin\theta$

(1)
$n$整数
$z^n=\cos n \theta + i \sin n \theta$を示せ

(2)
$z+\displaystyle \frac{1}{z}$を$\cos \theta$を用いて表せ

(3)
$\cos^6\theta$を$\cos2\theta,\cos4\theta,\cos6\theta$を用いて表せ

出典:2005年成城大学 過去問
この動画を見る 

慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exa

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
a,b,cは実数
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2 \leqq y \leqq 2$の範囲で$v(y) \geqq 0$であることを示せ
この動画を見る 
PAGE TOP