#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分 - 質問解決D.B.(データベース)

#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
投稿日:2024.07.28

<関連動画>

【数Ⅱ】【微分法と積分法】定積分の不等式の証明 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式
$\left( \int_{0}^{1} (x-a)(x-b) \,dx \right)^2 \leq \int_{0}^{1} (x-a)^2 \,dx \int_{0}^{1} (x-b)^2 \,dx$
を証明せよ。また、等号が成り立つのはどのような場合か。
ただし、$a, b$ は定数とする。
この動画を見る 

#筑波大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} x^2\cos\ x\ dx$

出典:2018年筑波大学
この動画を見る 

#同志社大学2021#定積分_62

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (2x-1)\log x \ dx$を解け.

2021同志社大学過去問題
この動画を見る 

大学入試問題#817「難易度の高い詰将棋!大局観が大事!」 #東京医科歯科大学(2024)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x}{1+\sqrt{ \sin\ 2x }} dx$

出典:2024年東京医科歯科大学
この動画を見る 

福田のおもしろ数学265〜直交する2つの円柱の共通部分の体積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
x軸、y軸を軸とする半径1の円柱T_1 , \ T_2の共通部分の体積を求めよ。$(図は動画参照)
この動画を見る 
PAGE TOP