福田の数学〜陰関数を考える貴重な問題〜明治大学2023年全学部統一Ⅲ第4問〜陰関数のグラフの増減とグラフ - 質問解決D.B.(データベース)

福田の数学〜陰関数を考える貴重な問題〜明治大学2023年全学部統一Ⅲ第4問〜陰関数のグラフの増減とグラフ

問題文全文(内容文):
$\Large{\boxed{4}}$ 座標空間において、2点(-2,0),(2,0)からの距離の積が4であるような点Pの軌跡を考える。点Pの座標を($x$,$y$)とすると、$x$,$y$は次の方程式を満たす。
$y^4$+$\boxed{\ \ ア\ \ }y^2$+$(\boxed{\ \ イ\ \ })^2$=16 ...(1)
方程式(1)が表す曲線を$C$とする。$C$の概形を描くことにしよう。まず、曲線$C$と$x$軸との共有点の$x$座標は$\boxed{\ \ ウ\ \ }$と$±\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}$である。次に、(1)を$y^2$に関する2次方程式とみて解けば、$y^2$≧0 であるので、
$y^2$=$\boxed{\ \ カ\ \ }$+$4\sqrt{\boxed{\ \ キ\ \ }}$ ...(2)
となり、また$x$のとりうる値の範囲は
$-\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$
となる。$x$≧0, $y$≧0とすれば、方程式(2)は0≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$を定義域とする$x$の関数$y$を定める。このとき、0<$x$$\boxed{\ \ サ\ \ }$のとき共有点はなく、0≦$a$≦$\boxed{\ \ サ\ \ }$のとき共有点がある。
共有点の個数は、$a$=0のとき$\boxed{\ \ シ\ \ }$個、0<$a$<$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ ス\ \ }$個、$a$=$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ セ\ \ }$個となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ カ\ \ }$、$\boxed{\ \ キ\ \ }$の解答群
⓪$x^2+1$ ①$-(x^2+1)$ ②$x^2-1$ ③$-(x^2-1)$ ④$x^2+4$ 

⑤$2(x^2+4)$ ⑥$x^2-4$ ⑦$2(x^2-4)$ ⑧$-(x^2+4)$ ⑨$-2(x^2-4)$ 
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 座標空間において、2点(-2,0),(2,0)からの距離の積が4であるような点Pの軌跡を考える。点Pの座標を($x$,$y$)とすると、$x$,$y$は次の方程式を満たす。
$y^4$+$\boxed{\ \ ア\ \ }y^2$+$(\boxed{\ \ イ\ \ })^2$=16 ...(1)
方程式(1)が表す曲線を$C$とする。$C$の概形を描くことにしよう。まず、曲線$C$と$x$軸との共有点の$x$座標は$\boxed{\ \ ウ\ \ }$と$±\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}$である。次に、(1)を$y^2$に関する2次方程式とみて解けば、$y^2$≧0 であるので、
$y^2$=$\boxed{\ \ カ\ \ }$+$4\sqrt{\boxed{\ \ キ\ \ }}$ ...(2)
となり、また$x$のとりうる値の範囲は
$-\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$
となる。$x$≧0, $y$≧0とすれば、方程式(2)は0≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$を定義域とする$x$の関数$y$を定める。このとき、0<$x$$\boxed{\ \ サ\ \ }$のとき共有点はなく、0≦$a$≦$\boxed{\ \ サ\ \ }$のとき共有点がある。
共有点の個数は、$a$=0のとき$\boxed{\ \ シ\ \ }$個、0<$a$<$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ ス\ \ }$個、$a$=$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ セ\ \ }$個となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ カ\ \ }$、$\boxed{\ \ キ\ \ }$の解答群
⓪$x^2+1$ ①$-(x^2+1)$ ②$x^2-1$ ③$-(x^2-1)$ ④$x^2+4$ 

⑤$2(x^2+4)$ ⑥$x^2-4$ ⑦$2(x^2-4)$ ⑧$-(x^2+4)$ ⑨$-2(x^2-4)$ 
投稿日:2023.11.10

<関連動画>

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
この動画を見る 

京都大 3次関数 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ

出典:2019年京都大学 過去問
この動画を見る 

【高校数学】数Ⅲ-99 対数関数の導関数②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=(\log x)^2$

②$y=\dfrac{\log x}{x}$

③$y=\log(x+\sqrt{x^2+3})$

④$y=\log \dfrac{1+\sin x}{1- \sin x}$
この動画を見る 

福田のおもしろ数学391〜簡単な関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
任意の実数$x,y$に対して$f(0)=1$、

$f(xy+1)=f(x)f(y)-f(y)-x+2$

が成り立つような実数値関数$f(x)$をすべて求めて下さい。
この動画を見る 
PAGE TOP