#65数検1級1次過去問「ミスれない戦い」 #極限 - 質問解決D.B.(データベース)

#65数検1級1次過去問「ミスれない戦い」 #極限

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{\sqrt[ n ]{ n! }}{n}$

出典:数検1級1次過去問
単元: #関数と極限#数列の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{\sqrt[ n ]{ n! }}{n}$

出典:数検1級1次過去問
投稿日:2024.05.17

<関連動画>

東大 入試問題 天才ヨビノリのたくみさんが解説 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学1990
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt k}$,$b_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {2k+1}}$
とするとき、$\displaystyle\lim_{n \to \infty}a_n,\displaystyle\lim_{n \to \infty}\frac{b_n}{a_n}$を求めよ。
この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の一般項を求めよ。また、{an}の極限を求めよ。a₁=1/2、an+₁=an/2+an

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列$a_n$の一般項を求めよ。
また、$a_n$の極限を求めよ。

$a_1=\dfrac{1}{2}$、$a_{n+1}=\dfrac{a_n}{2+a_n}$
この動画を見る 

大学入試問題#152 東京工業大学(2002) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{log\ n}(1+\displaystyle \frac{1}{2}+・・・+\displaystyle \frac{1}{n})$を求めよ。

出典:2002年東京工業大学 入試問題
この動画を見る 

08兵庫県教員採用試験(数学:4番 微積・極限値)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$f_n(x)=\frac{logx}{x^n}$
(1)$log x < x ( x > 1)$
を示し$\displaystyle \lim_{ x \to \infty } f_n(x)$を求めよ。
(2)$y=f_n(x)$のグラフをかけ
(3)$x=a_n$(極大値をとるx座標)
$y=f_n(x),$x軸で囲まれた面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty } n^2S_n$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 
PAGE TOP