【数学ゴールデン】2巻と5巻で紹介された整数問題を解いてみた #数学ゴールデン #数学オリンピック #整数問題 - 質問解決D.B.(データベース)

【数学ゴールデン】2巻と5巻で紹介された整数問題を解いてみた #数学ゴールデン #数学オリンピック #整数問題

問題文全文(内容文):
黒板に1以上100以下の整数が1つずつ書かれている。
黒板から整数$a,b$を選んで消し、新たに$a^2b^2+3$と$a^2+n^2+2$の最大公約数を書くという操作を繰り返し行う。
黒板に書かれている整数が1つだけになったとき、その整数は平方数でないことを示せ。
$a,2,3,4,・・・,99,100$
$2^23^2+3=39$と$2^2+3^2+2=15$の最大公約数は3
残り1つになった整数は平方数でない
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
黒板に1以上100以下の整数が1つずつ書かれている。
黒板から整数$a,b$を選んで消し、新たに$a^2b^2+3$と$a^2+n^2+2$の最大公約数を書くという操作を繰り返し行う。
黒板に書かれている整数が1つだけになったとき、その整数は平方数でないことを示せ。
$a,2,3,4,・・・,99,100$
$2^23^2+3=39$と$2^2+3^2+2=15$の最大公約数は3
残り1つになった整数は平方数でない
投稿日:2023.08.26

<関連動画>

灘中 ちょっと合同式

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続した5つの整数の積が2441880 最初の整数は?

出典:2002年灘中学校 過去問
この動画を見る 

2021東京海洋大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は5以上の素数である.
$P^2-1$は$24$の倍数を示せ.

2021東京海洋大過去問
この動画を見る 

整数問題 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
この動画を見る 

整数問題 最大公約数と最小公倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A$と$B$の最大公約数を$G$,最小公倍数を$L$とする.
$(A+B)^2-2LG=3600$,$A,B$を求めよ.
この動画を見る 

整数問題 筑波大附属

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
4ケタの数字3,4,5,6を並べ替えてできる4ケタの数をmとし、mの各位の数を逆順に並べてできる数をnとするとm+nは必ずpの倍数となる。
(ただしpは考えられる最大の整数)
p=?

筑波大学附属高等学校
この動画を見る 
PAGE TOP