大学入試問題#589「一度は解いておきたい良問」 奈良女子大学(2004) #数列 - 質問解決D.B.(データベース)

大学入試問題#589「一度は解いておきたい良問」 奈良女子大学(2004) #数列

問題文全文(内容文):
$a_1\times a_2\times・・・\times a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$のとき
$\displaystyle \sum_{n=1}^\infty a_n$を求めよ

出典:2004年奈良女子大学 入試問題
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1\times a_2\times・・・\times a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$のとき
$\displaystyle \sum_{n=1}^\infty a_n$を求めよ

出典:2004年奈良女子大学 入試問題
投稿日:2023.07.14

<関連動画>

東大 確率 漸化式 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91東京大学過去問題
正四面体をn回転がしたとき、最初に床に接していた面が床に接している確率
この動画を見る 

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$,  $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(1)〜連立型の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)数列$\left\{a_n\right\},\ \left\{b_n\right\}$について次の条件が与えられている。
$\left\{
\begin{array}{1}
a_{n+1}=7a_n-10b_n\\
b_{n+1}=2a_n-2b_n 
\end{array}
\right.   (n=1,2,3,\ldots)$
ただし、$a_1=11,\ b_1=4$とする。このとき、
$\left\{
\begin{array}{1}
c_n=a_n-2b_n   \\
d_n=2a_n-5b_n  
\end{array}
\right.   (n=1,2,3,\ldots)$
とおくと、$c_n=\boxed{\ \ ア\ \ }^n, d_n=\boxed{\ \ イ\ \ }^n$であり、これより$\left\{a_n\right\},\ \left\{b_n\right\}$
の一般項は
$\left\{
\begin{array}{1}
a_n=\boxed{\ \ ウ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ エ\ \ }・\boxed{\ \ イ\ \ }^n\\
b_n=\boxed{\ \ オ\ \ }・\boxed{\ \ ア\ \ }^n-\boxed{\ \ イ\ \ }^n    \\
\end{array}
\right.$
である。

2021明治大学全統過去問
この動画を見る 

【テストによく出る!】漸化式の典型問題はこう解く!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3$ $a_1=1$
この動画を見る 
PAGE TOP