大学入試問題#567「定数aの処理の難しさ」 東京大学1938 #不定積分 - 質問解決D.B.(データベース)

大学入試問題#567「定数aの処理の難しさ」 東京大学1938 #不定積分

問題文全文(内容文):
$\displaystyle \int x^2(x^2+a^2)^{\frac{1}{2}}\ dx$

出典:1938年東京帝国大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
01:60 本編スタート
09:30 作成した解答①
09:40 作瀬下解答②
09:51 エンディング(楽曲提供:兄イエティさん)

単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2(x^2+a^2)^{\frac{1}{2}}\ dx$

出典:1938年東京帝国大学 入試問題
投稿日:2023.06.17

<関連動画>

大学入試問題#439「国立大学らしい綺麗な問題」 群馬大学(2015) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。

(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$

出典:2015年群馬大学 入試問題
この動画を見る 

大学入試問題#231 電気通信大学(2012) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sin(log\ x)dx$を計算せよ。

出典:2012年電気通信大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題009〜九州大学2015年度理系数学第2問〜関数の増減と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)関数$\ y=\frac{1}{x(\log x)^2}$は$x \gt 1$において単調に減少することを示せ。

(2)不定積分$\ \int\frac{1}{x(\log x)^2}dx$ を求めよ。

(3)nを3以上の整数とするとき、不等式
$\sum_{k=3}^n\frac{1}{k(\log k)^2} \lt \frac{1}{\log 2}$
が成り立つことを示せ。

2015九州大学理系過去問
この動画を見る 

大学入試問題#236 茨城大学(2012) 改 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{x^2}(1+\displaystyle \frac{2}{x})^4dx$を計算せよ。

出典:2012年茨城大学 入試問題
この動画を見る 

大学入試問題#576「逆に閃かないと苦戦」 京都帝国大学(1938) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\theta+\cos\theta}{3+\sin2\theta} d\theta$

出典:1938年京都帝国大学 入試問題
この動画を見る 
PAGE TOP