問題文全文(内容文):
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。
(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。
(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。
(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。
(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
投稿日:2021.11.29