数学「大学入試良問集」【16−6 複素数平面と軌跡・回転移動】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【16−6 複素数平面と軌跡・回転移動】を宇宙一わかりやすく

問題文全文(内容文):
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。

(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$である定数$a$に対し、複素数平面上で$z=t+ai(t$は実数全体を動く$)$が表す直線を$l$とする。
ただし、$i$は虚数単位である。
(1)
複素数$z$が$l$上を動くとき、$z^2$が表す点の軌跡を図示せよ。

(2)
直線$l$を、原点を中心に角$\theta$だけ回転移動した直線を$m$とする。
$m$と(1)で求めた軌跡との交点の個数を$\sin\theta$の値で場合分けして求めよ。
投稿日:2021.11.29

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)$|z-1|=|z+i|$
(2)$|2z-1-i|=4$
(3)$|2\bar{z}-1+i|=4$
(4)|$z+2|=2|z-1|$
この動画を見る 

数学「大学入試良問集」【16−5 複素数平面と軌跡の図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を複素数とし、$i$を虚数単位とする。
(1)$\displaystyle \frac{1}{z+i}+\displaystyle \frac{1}{z-i}$が実数となる点$z$全体の描く図面$P$を複素数平面上にそれぞれ図示せよ。
(2)$z$が上で求められた図形$P$上を動くときに$\omega=\displaystyle \frac{z+i}{z-i}$の描く図形を複素数平面上に図示せよ。
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$

$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$

これらを求めよ。

産業医科大過去問
この動画を見る 

福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

【数C】【複素数平面】複素数と図形11 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
異なる3つの複素数α、β、γの間に、次の等式が成り立つとき、3点A(α)、B(β)、C(γ)を頂点とする△ABCの3つの角の大きさを求めよ。

(1)$\displaystyle \frac{γーα}{βーα}=\sqrt{3}i $
(2)$α+iβ=(1+i)γ$
この動画を見る 
PAGE TOP