【高校数学】 数Ⅱ-4 二項定理② - 質問解決D.B.(データベース)

【高校数学】  数Ⅱ-4  二項定理②

問題文全文(内容文):
◎次の式の展開式における[ ]に指定された項の係数は?

①$(2a+b-c)^6 [a^2bc^3]$

②$(3x-2y+4z)^4 [xy^2z]$

③$ (x^2+x-2)^4[x^5]$

④$(x^2-3x+\displaystyle \frac{2}{x})^4 [x^2]$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式の展開式における[ ]に指定された項の係数は?

①$(2a+b-c)^6 [a^2bc^3]$

②$(3x-2y+4z)^4 [xy^2z]$

③$ (x^2+x-2)^4[x^5]$

④$(x^2-3x+\displaystyle \frac{2}{x})^4 [x^2]$
投稿日:2015.04.09

<関連動画>

【数Ⅱ】式と証明:(茶番)突然問題を出されたから解いてみた

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$(x,y)$が$\frac{x^2}{4}+\frac{y^2}{5}=$1 $x>0$、$y>0$ を満たしながら動くとき、

$\log_{2}x + \log_{\frac{1}{2}}\frac{1}{y} $の最大値を求めよ。
この動画を見る 

【数Ⅱ】【式と証明】等式の証明6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $x+y+z=-1 ,xy+yz+zx+xyz=0$ ならば、$x ,y ,z$ のうち少なくとも1つは$-1$であることを示せ。
(2) $(bc+ca+ab)(a+b+c)=abc$ならば、$a ,b ,c$ のうちどれか2つの和は$0$であることを示せ。
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+・・・・・・・+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を17で割った余りを求めよ.
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
この動画を見る 

【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。

2017昭和大過去問
この動画を見る 
PAGE TOP