数学「大学入試良問集」【18−7 球に外接する直円錐の最小体積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−7 球に外接する直円錐の最小体積】を宇宙一わかりやすく

問題文全文(内容文):
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
投稿日:2021.07.07

<関連動画>

08岡山県教員採用試験(数学:1-(4) 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$\dfrac{dy}{dx}=\dfrac{y(x-1)}{x}$
をみたす曲線で$(1,1)$を通る方程式を求めよ.
この動画を見る 

微分方程式⑤-1【1階線形微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=- \frac{x}{t}=t+1$
(2)$\frac{dx}{dt}+x=e^{-t}$
(3)$\frac{dx}{dt}+xcost = 2te^{-sint}$
1階線形微分方程式
$\frac{dx}{dt}+P(t)x=Q(t)$
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$について、$f'(0)=f''(0)=0$であることを示せ。
また、$f(x)$は$x=0$で極値をとるかどうかを調べよ。
(1) $f(x)=x^4$
(2) $f(x)=x^2\sin x$
この動画を見る 

12京都府教員採用試験(数学:2番 接線系)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$

(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
この動画を見る 

福田の数学〜京都大学2023年理系第4問〜複雑な関数の最大値と最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 次の関数f(x)の最大値と最小値を求めよ。
f(x)=$e^{-x^2}$+$\frac{1}{4}x^2$+1+$\frac{1}{e^{-x^2}+\frac{1}{4}x^2+1}$ (-1≦x≦1)
ただし、eは自然対数の底であり、その値はe=2.71...である。

2023京都大学理系過去問
この動画を見る 
PAGE TOP