数学「大学入試良問集」【13−12 数列と二項定理】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−12 数列と二項定理】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。

(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
  (ⅰ)$a_n$を求めよ。
  (ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。

(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
  (ⅰ)$a_n$を求めよ。
  (ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
投稿日:2021.06.10

<関連動画>

【数B】【数列】群数列 ※問題文は概要欄

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
自然数の列を、次のように1個、2個、4個、8個、……、2^(n-1)個、……の群に分ける。
1 | 2, 3 | 4, 5, 6, 7 | 8, 9, 10, 11, 12, 13, 14, 15 | 16, ……
(1)第n群の最初の自然数を求めよ。
(2)500は第何群の第何項か。
(3)第n群にあるすべての自然数の和を求めよ。

問題2
数列1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1,……がある。
(1)nを自然数としたとき、自然数n²が初めて現れるのは第何項か。
(2) 第100項を求めよ。
(3)初項から第100項までの和を求めよ。

問題3
数列
(1/2), (1/3), (2/3), (1/4), (2/4), (3/4), (1/5), (2/5), (3/5), (4/5), (1/6), ……
において、初項から第800項までの和を求めよ。
この動画を見る 

【高校数学】 数B-63 等差数列とその和⑥

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1から200までの整数のうち,次のような数の和を求めよう.

①4の倍数

②4で割り切れない数

③30から100までの自然数のうち,
4または6の倍数の数の和を求めよう.
この動画を見る 

大学入試問題#483「作成時間がありませんでした」 近畿大学医学部(2023) #解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数列#漸化式#数B
指導講師: ますただ
問題文全文(内容文):
$x^2-x+1=0$の解を$\alpha,\beta$とする
$\alpha^9+\beta^9$の値を求めよ

出典:2023年近畿大学医学 入試問題
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.

$100!$を$101$で割った余りを求めよ.
この動画を見る 

群数列 近江高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
群数列
$\frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{4}{5} \quad \frac{3}{5} $
$① \quad ② \quad ③ \quad ④ \quad ⑤ \quad ⑥ \quad ⑦ \quad ⑧ $

近江高等学校(改)
この動画を見る 
PAGE TOP