数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく

問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
投稿日:2021.05.10

<関連動画>

京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。

(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る 

福田のおもしろ数学142〜チェビシェフの多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を正の整数とする。$\cos n\theta$は$\cos\theta$の$n$次式で表されることを証明してください。
この動画を見る 

福田のおもしろ数学293〜三角方程式を満たす正の整数xの最小値

アイキャッチ画像
単元: #図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数とグラフ#加法定理とその応用
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \tan 19x^{\circ}\ =\ \frac{\cos 96^{\circ}+\sin 96^{\circ}}{\cos 96^{\circ}-\sin 96^{\circ}}\ $を満たす最小の正の整数$\ x\ $を求めよ。
この動画を見る 

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値, 最小値を求めよ。(1),(2)については、そのときのxの値も求めよ。
(1) y=-sinx+cosx(0$\leqq$x$\lt$2π)
(2) y=sin2x-$\sqrt{3}$cos2x(0$\leqq$x$\lt$π)
(3) y=4sinx+3cosx
(4) y=$\sqrt{7}$sinx-3cosx
この動画を見る 
PAGE TOP