数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく

問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
投稿日:2021.05.10

<関連動画>

京都大 三角比 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$0 \leqq α < β< γ< 2\pi$
$cosα+cosβ+cosγ=0$
$sinα+sinβ+sinγ=0$である
β-α、γ-βの値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 

注意ポイントあり!定数分離の良問です【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数 $f(\theta)=\dfrac{1}{\sqrt 2}sin2 \theta-sin \theta+cos\theta$ ($0≦\theta≦\pi)$を考える。

(3)$a$を実数の定数とする。

$f(\theta)=a$となる$\theta$がちょうど2個であるような$a$のい範囲を求めよ。

北海道大過去問
この動画を見る 

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}\ 0 \leqq \theta \lt 2\pi$とする。
座標平面上の3点O(0,0), $P(\cos\theta,\sin\theta)$, $Q(1,3\sin2\theta)$
が三角形をなすとき、$\triangle OPQ$の面積の最大値を求めよ。

2022一橋大学文系過去問
この動画を見る 
PAGE TOP