数検準1級2次過去問(1番 指数対数の不等式) - 質問解決D.B.(データベース)

数検準1級2次過去問(1番 指数対数の不等式)

問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#対数関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
投稿日:2020.11.30

<関連動画>

慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exa

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
a,b,cは実数
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2 \leqq y \leqq 2$の範囲で$v(y) \geqq 0$であることを示せ
この動画を見る 

福田のおもしろ数学368〜多項式と二項係数の関係式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$P_k(x)=1+x+x^2+\cdots +x^{k-1}$のとき、
$\displaystyle \sum^n_{k=1}{} _nC_kP_k(x)=2^{n-1}P_n(\dfrac{1+x}2)$
が成り立つことを証明せよ。
この動画を見る 

これ意味わかる?

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ意味わかる?
※問題式は動画内参照
この動画を見る 

福田のおもしろ数学394〜6次の多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
6次の多項式$P(x)$について

$0\lt a \lt b$が

$P(a)=P(-a),P(b)=P(-b),P'(0)=0$

を満たしている。

任意の$x$に対し$P(x)=P(-x)$が

成り立つことを証明せよ。
この動画を見る 

福田のおもしろ数学480〜三角関数の不等式の証明とイェンゼンの不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$0\leqq \alpha,\beta \gamma \lt 90°$

$\sin \alpha +\sin \beta +\sin \gamma =1$のとき

$\tan^2\alpha+\tan^2\beta+\tan^2\gamma \geqq\dfrac{3}{8}$

を証明して下さい。
    
この動画を見る 
PAGE TOP