数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく

問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
投稿日:2021.03.19

<関連動画>

分数の中に分数 慶應義塾高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{\frac{1}{3} - \frac{2}{5} }
{\frac{1}{3} - \frac{2}{5} + \frac{3}{7}}$

慶應義塾高等学校
この動画を見る 

分母が文字  昭和学院秀英

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{3}{a} - \frac{2}{a+b} - \frac{3b}{a^2+ab}$

昭和学院秀英高等学校
この動画を見る 

あれを使って解こう!大阪教育大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
xを実数とする。
$x^8(y-x^2)\geqq 4$のとき、$x(x+y)\geqq 4$を示せ.

大阪教育大過去問
この動画を見る 

大阪教育大 指数関数の最小値 解の個数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#微分法と積分法#恒等式・等式・不等式の証明#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03大阪教育大学過去問題
x,a実数
$f(x)=4^x-6・2^x-6・2^{-x}+4^{-x}$
(1)f(x)の最小値
(2)f(x)=aとなるようなxの個数
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$f(x)=(x+2)(x-1)^{10}$とし、この式を展開して
$f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}$
と表す。ただし、$a_0,a_1,...,a_{11}$は定数である。
$(\textrm{a})$多項式$f(x)$を$x-2$で割った時の余りは$\boxed{ア}$である。
$(\textrm{b})a_{10}=-\ \boxed{イ}$である。
$(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{ウエオ}$である。
$(\textrm{d})\ \ \ \ f(i)=\boxed{カキ}-\boxed{クケ}\ i \ $である。ただし、$i$は虚数単位である。

2022明治大学理工学部過去問
この動画を見る 
PAGE TOP