大学入試問題#235 自治医科大学(2014) 複素数 - 質問解決D.B.(データベース)

大学入試問題#235 自治医科大学(2014) 複素数

問題文全文(内容文):
$\omega=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\omega^{20}+\omega^{19}+\omega^8+\omega^6+\omega^4+\omega^3$の値を求めよ。

出典:2012年自治医科大学 入試問題
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\omega=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\omega^{20}+\omega^{19}+\omega^8+\omega^6+\omega^4+\omega^3$の値を求めよ。

出典:2012年自治医科大学 入試問題
投稿日:2022.06.23

<関連動画>

10神奈川県教員採用試験(数学:10番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$ $z=cosθ+isinθ$
$0 < θ \leqq \pi$
$w=\frac{1-z^3}{1-z}$ , $|w|=1$
のときθの値を求めよ。
この動画を見る 

数学「大学入試良問集」【16−3 ド・モアブルの定理と累乗の取り扱い】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を絶対値が1の複素数とする。
このとき以下の問いに答えよ。
(1)$z^3-z$の実部が$0$となるような$z$をすべて求めよ。
(2)$z^5+z$の絶対値が1となるような$z$をすべて求めよ。
(3)$n$を自然数とする。$z^n+1$の絶対値が1となるような$z$となるような$z$をすべてかけ合わせて得られる複素数を求めよ。
この動画を見る 

数検準1級1次過去問(4番 複素数)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
4⃣
$α=-2+2i$ , $β=3+3\sqrt{3}i$
(1)$|\frac{α}{β}|$を求めよ。
(2)$\frac{α}{β}$の偏角θを求めよ。
この動画を見る 

【数C】【複素数平面】実数であることの証明 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP