【高校数学】 数Ⅱ-93 三角関数の性質④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-93 三角関数の性質④

問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$

②$\cos \displaystyle \frac{11}{6}π$

③$\tan \displaystyle \frac{7}{6}π$

[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____

$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____

$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____

$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____

$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____

$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____

$\sin (π-\theta)=$⑩____

$\cos (π-\theta)=$⑪____

$\tan (π-\theta)=$⑫____
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$

②$\cos \displaystyle \frac{11}{6}π$

③$\tan \displaystyle \frac{7}{6}π$

[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____

$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____

$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____

$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____

$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____

$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____

$\sin (π-\theta)=$⑩____

$\cos (π-\theta)=$⑪____

$\tan (π-\theta)=$⑫____
投稿日:2015.08.02

<関連動画>

福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$三角関数(22) 18°系の三角比(3)
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式f(x)を求めよ。

(2)$\alpha=18°$のとき次の等式を示せ。
$\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}$
この動画を見る 

14京都府教員採用試験(数学:4番 3次方程式)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$x^3+(a+4)x^2+(a+2)x-2a-7=0$
が異なる3つの実数解をもつように
定数$a$の値の範囲を求めよ.
この動画を見る 

【数Ⅱ】微分法と積分法:積分計算で計算ミスを減らすテクニック

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{3}^{5}(x-3)(x-6)dx$を求めよ.
この動画を見る 

福田のわかった数学〜高校2年生010〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 不等式の証明
$k$が$(1)(2)(3)$のそれぞれの場合に、不等式
$x^2+y^2+z^2$
$+k(xy+yz+zx) \geqq 0$
が成り立つことを示せ。等号成立条件も求めよ。
(1)$k=2$  (2)$k=-1$  (3)$-1 \lt k \lt 2$
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(2)〜余事象と確率の加法定理

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP