福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解 - 質問解決D.B.(データベース)

福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解

問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
投稿日:2024.04.21

<関連動画>

東京商船大 微分公式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$

(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ

(2)
$f(x)$の極値を求めよ

出典:東京海洋大学 過去問
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $ \displaystyle f(x)= \frac{ax^2+bx+1}{x^2+1}$ が $x=2$で極小値$-1$をとるように、定数$a,b$の値を定めよ。また、$f(x)$の極大値を求めよ。
この動画を見る 

【数Ⅲ】東大の基礎問題!絶対に落としてはいけない!【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$f(x)=\dfrac{x}{sin x}+cos x$  ($ 0<x<\pi $)
の増減表を作り,$ x→+0,x→\pi-0$のときの極限を調べよ。

東大過去問
この動画を見る 

【数Ⅲ-176】速度と道のり①(直線運動編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)

ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は

位置の変化$S=$ ①
道のり$l=$ ➁

Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(6)
$0 \lt a \lt b \lt \frac{\pi}{2}$のとき、
$\frac{a}{b} \lt \frac{\sin a}{\sin b}$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP