福田のおもしろ数学114〜円の接線の公式の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学114〜円の接線の公式の証明

問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
投稿日:2024.04.17

<関連動画>

福田の数学〜早稲田大学2024年人間科学部第5問〜円の性質と切り取られる弦の長さ

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2点A(-$\sqrt 2$-$\sqrt 6$, $\sqrt 2$-$\sqrt 6$), B($\sqrt 2$+$\sqrt 6$, $\sqrt 2$-$\sqrt 6$)と原点O(0, 0)について、$\theta$=$\angle\textrm{AOB}$ とするとき、$\theta$=$\displaystyle\frac{\boxed{ナ}}{\boxed{ニ}}\pi$ である。ただし、0≦$\theta$≦$\pi$ とする。さらに円$x^2$+$y^2$-$2x$-$10y$+22=0 を$C$とする。円$C$上の点P, Qは
$\angle\textrm{APB}$=$\angle\textrm{AQB}$=$\displaystyle\frac{5}{12}\pi$
を満たす点とする。このとき、PQ=$\displaystyle\boxed{ヌ}\sqrt{\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}}$ である。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(2)三角形の外心、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-2,6),B(1,-3),C(5,-1)$を頂点とする$\triangle ABC$の外心の座標を求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角$\alpha$だけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'を$x,y,s,t,\alpha$
の式で表すと$x'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }$となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径$\frac{a}{2}$で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて$(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)$となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
$(\textrm{i})$点B$(\frac{a}{2},0)$を中心として、円Kを$\boxed{\ \ ウ\ \ }$に角$\boxed{\ \ エ\ \ }$だけ回転させる。
$(\textrm{ii})$原点Oを中心として、円Kを$\boxed{\ \ オ\ \ }$に角$\boxed{\ \ カ\ \ }$だけ回転させる。

$\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }$の選択肢
時計回り,反時計回り,$\beta,2\beta,\frac{1}{2}\beta$

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、$0 \lt b \lt a$)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線を$S_1$とする。$S_1$上の
点の座標を(x,y)として、$S_1$の方程式をx,yを用いて書くと$\boxed{\ \ キ\ \ }$となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを$\boxed{\ \ ク\ \ }$回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線を$S_2$とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#$(r,\theta)$による$S_2$の極方程式は$r=\boxed{\ \ ケ\ \ }$である。
ただし$r,\theta$はそれぞれ$S_2$上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 

【高校数学】円と直線の交点【連立方程式の同値変形】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
x²+y²=4
y=3x-2
交点を求めよ

連立をするとき余計な解が出てきたことはありませんか?
なぜそういうことがおきるかを解説します!
この動画を見る 

【数Ⅱ】図形と方程式:円:円と方程式:円上の点Pにおける接線の方程式を求めよ。例題付き!

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
円上の点における接線の方程式の求め方を解説!実際に
(1)円 x²+y²=5上の点P(1, 2)における接線の方程式、
(2) 円x²+y²= 36上の点P(6, 0)における接線の方程式 
も求めます。
この動画を見る 
PAGE TOP