【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。

$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
チャプター:

0:00 オープニング
0:05 問題1
2:26 問題2

単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。

$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
投稿日:2024.12.05

<関連動画>

【高校数学】  数Ⅰ-85  三角比⑩

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$であるとき、$y=\cos^2\theta-2\sin\theta-1$の最大値と最小値を求め、そのときの$\theta$も求めよう。
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第3問〜散布図と箱ひげ図

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ある高校の生徒30人に対し、50m走のタイムを2回計測した。
左図(※動画参照)は1回目の計測結果を横軸に2回目の計測結果
を縦軸に取った散布図である。
(1)次の$(\textrm{A})$から$(\textrm{F})$のうち、1回目の計測結果の箱ひげ図
として適当なものは$\boxed{\ \ ネ\ \ }$であり、2回目の計測結果の箱ひげ図として
適当なものは$\boxed{\ \ ノ\ \ }$である。
(2)次の$(\textrm{G})$から$(\textrm{L})$のうち、1回目と2回目の計測結果の合計の
箱ひげ図として適切なものは$\boxed{\ \ ハ\ \ }$である。
(3)遅れてやってきた31人目の生徒の50m走のタイムを2回計測した
結果、1回目は20.0(秒)、2回目は10.0(秒)であった。各生徒の2回の\\
計測結果の合計を考え、最初の30人の生徒の平均値を$\bar{ x_{31} }$,中央値を
$m_{31}$とする。$\bar{ x_{30} }=17.0$であることに注意すると、
$\bar{ x_{31} }-\bar{ x_{30} }=\boxed{\ \ ヒ\ \ }$である。一方、
$m_{31}-m_{30}=\boxed{\ \ フ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

2021昭和(医)いわくつき学習院の過去問と同じ!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.

2021昭和(医)
この動画を見る 

【数学】中高一貫校用問題集数式・関数編:2次関数の決定

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)$x^2$の係数が2で、そのグラフが点(1,3)を通り、頂点が直線$y=2x-3$上にあるような2次関数を求めよ。
(2)2次関数$y=x^2-2ax+b$のグラフが点(1,3)を通り、頂点が直線$y=x-10$上にあるとき、定数a,bの値を求めよ。
(3)2次関数$y=2x^2+ax+b$のグラフが点(3,5)を通り、頂点が直線$y=2x-5$上にあるとき、定数a,bの値を求めよ。
この動画を見る 

角度 解けたら楽しい レベルC

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは正方形
$\angle x=?$
*図は動画内参照
この動画を見る 
PAGE TOP