福田の数学〜立教大学2022年経済学部第1問(5)〜群数列 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第1問(5)〜群数列

問題文全文(内容文):
自然数n が 2n-1 個続く、初項が1の次のような数列がある。
1,2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5,…

このとき、自然数 m が初めて現れるのは第何項か。
また第 2022項はいくつか。

2022立教学部経済学部過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
自然数n が 2n-1 個続く、初項が1の次のような数列がある。
1,2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5,…

このとき、自然数 m が初めて現れるのは第何項か。
また第 2022項はいくつか。

2022立教学部経済学部過去問
投稿日:2022.09.22

<関連動画>

【数B】数学的帰納法が意味不明な人へ【新しいイメージで考える】

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】数学的帰納法解説動画です
-----------------
$1^2+3^2+5^2+…+(2n-1)^2=$
$\displaystyle \frac{1}{2}n(2n-1)(2n+1)$を証明せよ
この動画を見る 

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る 

【数B】漸化式:東大1995年 タイルの敷き詰め

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイルがある。縦2,横nの長方形の部屋をこれらのタイルで過不足なく敷き詰めることを考える。その並べ方の総数をA[n]で表す。ただし,nは正の整数である。たとえば$ A_1=1, A_2=3, A_3=5$ である。このとき,以下の問いに答えよう。
(1)$n≧3$のとき,$A_n$を$A_{n-1},A_{n-2}$を用いて表そう。
(2)$A_n$をnで表そう。
この動画を見る 

日本獣医生命科学大 例のあれ

アイキャッチ画像
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022日本獣医生命科学大学過去問題
n自然数
$S_n = \frac{3}{a_1}+\frac{5}{a_2}+\frac{7}{a_3}+\cdots+\frac{2n+1}{a_n}$
$a_n = 1^2+2^2+3^2+\cdots+n^2$
$S_n$を求めよ
この動画を見る 

【等差数列】中学受験・高校受験・大学受験で使える!SPI対策【勉強法】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数列#数列とその和(等差・等比・階差・Σ)#規則性(周期算・方陣算・数列・日暦算・N進法)#数学(高校生)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
等差数列

例1
5, 8, 11, 14, 17, -...と並んでいる。

(1) 20番目の数はいくつ?

(2)65は何番目の数?

(3)20日までの数を全部たすと いいくつになる?
この動画を見る 
PAGE TOP