09高知県教員採用試験(数学:1-(5) 微分方程式) - 質問解決D.B.(データベース)

09高知県教員採用試験(数学:1-(5) 微分方程式)

問題文全文(内容文):
微分方程式
$\displaystyle \frac{dy}{dx}=-3y$の一般解を求めよ。
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
$\displaystyle \frac{dy}{dx}=-3y$の一般解を求めよ。
投稿日:2021.10.12

<関連動画>

【数Ⅲ】【微分とその応用】不等式の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 次のことが成り立つことを証明せよ。

(1) $b≧a>0$のとき $logb-loga≧\displaystyle \frac{2(b-a)}{(b+a)}$

(2) $0<α<β≦\displaystyle \frac{π}{2}$のとき $\displaystyle \frac{α}{β}<\displaystyle \frac{sin α}{sin β}$

この動画を見る 

大学入試問題#503「微分してもよさげだけど・・・」 #藤田医科大学 (2023) #判別式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{8x^2+5}{x^2-3x+6}$
の最大値を$M$、最小値を$m$とするとき$\displaystyle \frac{M}{m}$を求めよ

出典:2023年藤田医科大学 入試問題
この動画を見る 

東京海洋大 3次関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ

出典:2005年東京海洋大学 過去問
この動画を見る 

【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2)

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
この動画を見る 

福田のおもしろ数学447〜簡単な関数方程式を解こう

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

正の実数の集合を$R^{+}$と表す。

$f:R^{+}→R^{+}$が任意の$x,y \in R^{+}$に対し

$f(x)f(y)=f(xy)+\dfrac{1}{x}+\dfrac{1}{y}$

を満たしている。

このような$f(x)$をすべて求めて下さい。
    
この動画を見る 
PAGE TOP