【数A】【整数の性質】合同式 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【整数の性質】合同式 ※問題文は概要欄

問題文全文(内容文):
次のものを求めよ。
(1)$37^{100}$を6で割った余り
(2$)5^{80}$を8で割った余り
(3)$3^{100}$を13で割った余り
(4)$4^{200}$を9で割った余り

nを整数とする。合同式を用いて、次のものを求めよ。
(1)nを8で割った余りが3であるとき、n²+2n+5を8で割った余り
(2)nを17で割った余りが15であるとき、3n²+5n+9を17で割った余り
(3)nを35で割った余りが2であるとき、n⁴+3n³+4を35で割った余り
(4)nを41で割った余りが38であるとき、n³+7n²+8を41で割った余り

合同式を用いて、次のものを求めよ。
(1)$123^{122}$の一の位
(2)$7^{251}$の下2桁
チャプター:

0:00 313解説
5:26 314解説
8:54 315解説

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)$37^{100}$を6で割った余り
(2$)5^{80}$を8で割った余り
(3)$3^{100}$を13で割った余り
(4)$4^{200}$を9で割った余り

nを整数とする。合同式を用いて、次のものを求めよ。
(1)nを8で割った余りが3であるとき、n²+2n+5を8で割った余り
(2)nを17で割った余りが15であるとき、3n²+5n+9を17で割った余り
(3)nを35で割った余りが2であるとき、n⁴+3n³+4を35で割った余り
(4)nを41で割った余りが38であるとき、n³+7n²+8を41で割った余り

合同式を用いて、次のものを求めよ。
(1)$123^{122}$の一の位
(2)$7^{251}$の下2桁
投稿日:2025.01.25

<関連動画>

東大 座標上の鋭角三角形

アイキャッチ画像
単元: #数A#図形の性質#平面上の曲線#三角形の辺の比(内分・外分・二等分線)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は実数であり,$b\neq 0$である.
$O(0,0).P(1,0),Q(a,b)$

(1)$\triangle OPQ$が鋭角三角形になる$a,b$の条件を不等式で表せ.
(2)$m,n$整数,$a,b$は(1)の条件を満たすとき,$(m+na)^2-(m+na)+n^2b^2 \geqq 0$を示せ.

1998東大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題053〜名古屋大学2017年度文系第3問〜不定方程式の解と条件を満たす約数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。

2017名古屋大学文系過去問
この動画を見る 

整数問題 慶應義塾大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数である.これを解け.
$a^3=b^2,c^3=d^2,c-a=9$

2020慶應大過去問
この動画を見る 

【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。

選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
この動画を見る 

南山大 n!0が100個並ぶ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。

出典:南山大学 過去問
この動画を見る 
PAGE TOP