【数Ⅱ】【式と証明】分数式の計算 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】分数式の計算 ※問題文は概要欄

問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
チャプター:

0:00 オープニング
0:05 1問目(1)解説
1:56 1問目(2)解説
4:57 2問目(1)解説
8:35 2問目(2)解説
11:55 3問目解説
14:14 エンディング

単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
投稿日:2025.01.29

<関連動画>

大学入試問題#919「昔は落ち着いた問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。

出典:一橋大(1960)
この動画を見る 

福田の1.5倍速演習〜合格する重要問題019〜東京工業大学2016年度理系数学第4問〜整数に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とする。
(1)nが素数または4のとき、$(n-1)!$はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、$(n-1)!$はnで割り切れることを示せ。

2016東京工業大学理系過去問
この動画を見る 

福田のおもしろ数学482〜漸化式で定まる数列に関する不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_1=1,a_2=\dfrac{1}{2},$

$a_{n+2}=a_n+\dfrac{1}{2}a_{n+1}+\dfrac{1}{4a_na_{n+1}}$のとき、

$\dfrac{1}{a_1a_3}+\dfrac{1}{a_2a_4}+\dfrac{1}{a_3a_5}+\cdots +\dfrac{1}{a_{2025}a_{2027}}\lt 4$

であることを証明せよ。
    
この動画を見る 

いろんな要素いっぱいの良問 日本医科大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$

日本医科大過去問
この動画を見る 

産業能率大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{100}$を$x^2+x+1$で割った商の$x^{95},x^{88},x^{33}$の係数、および余りを求めよ

出典:産業能率大学 過去問
この動画を見る 
PAGE TOP