【数Ⅱ】【三角関数】加法定理の応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】加法定理の応用3 ※問題文は概要欄

問題文全文(内容文):
0≦x<2π のとき、次の方程式を解け。
(1)cos2x=cosx
(2)sin2x=cosx
(3)2cos2x+4cosx-1=0
(4)sinx(1+cos2x)+sin2x(1+cosx)=0
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:30 (2)解説
2:35 (3)解説
3:50 (4)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0≦x<2π のとき、次の方程式を解け。
(1)cos2x=cosx
(2)sin2x=cosx
(3)2cos2x+4cosx-1=0
(4)sinx(1+cos2x)+sin2x(1+cosx)=0
投稿日:2025.03.13

<関連動画>

気づけば一瞬!!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
cosπ11cos2π11cos3π11cos4π11cos5π11の値を求めよ.

この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2
サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲であるθ
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと
ペナルティーエリアの左端までの距離をh(ただし、h<aとする)、Pからゴールライン
をx、Pの正面から右のゴールポストまでの角度をα、Pの正面から左のゴールポスト
までの角をβとしたとき、次頁の解放の文章を完成させなさい。

(解法)tanθを最も大きくするxを求める問題と考えることができる。
tanθ=tan    =tanαtanβ1+tanαtanβ=    ×xx2+    
tanθの逆数を考えると、相加相乗平均の定理より
1tanθ=x    +    x×    2        
であり、1tanθが最小、すなわちtanθが最大となるのはx=    のときである。

(解法終わり)
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、
x=    mのときに、θが最も大きくなることが分かる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田のわかった数学〜高校2年生087〜三角関数(26)2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学II 三角関数(26) 2変数関数の最大最小
α,βは0以上2πよりこの範囲を動く。
3sinβcosαcosβ
の最大値最小値を求めよ。
この動画を見る 

三角関数の合成とか大丈夫ですか?【数学 入試問題】【慶應義塾大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
y=2cos2θ3cosθsinθsin2θ(0θπ)
の最大値とその時のθを求めよ。

慶應義塾大過去問
この動画を見る 

【有名問題】京都大学の伝説の問題です【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
tan1°は有理数か?

数学入試問題過去問
この動画を見る 
PAGE TOP preload imagepreload image