【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】三角関数の合成1 ※問題文は概要欄

問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の方程式を解け。
(1) $sinx+\sqrt{3}cosx=-1$
(2) $2(sinx-cosx)=\sqrt{6}$
(3) $\sqrt{3}sin2x-cos2x=-\sqrt{2}$
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:42 (2)解説
3:06 (3)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の方程式を解け。
(1) $sinx+\sqrt{3}cosx=-1$
(2) $2(sinx-cosx)=\sqrt{6}$
(3) $\sqrt{3}sin2x-cos2x=-\sqrt{2}$
投稿日:2025.03.13

<関連動画>

19神奈川県教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣
tanα=2,tanβ=4,tan(α+β+γ)=1のときtanγを求めよ。
この動画を見る 

【高校数学】 数Ⅱ-100 三角関数を含む方程式・不等式②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。

①$2\sin \theta \leqq -\sqrt{ 3 }$

②$2\cos\theta-\sqrt{ 2 } \gt 0$

③$\tan \theta +\sqrt{ 3 } \lt 0$
この動画を見る 

【数Ⅱ】加法定理から出てくる公式【全部自力で導出しよう。暗記、ダメ絶対】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
(1$)\sin2x=cosx$$(0 \leqq x \lt 2\pi)$を解け.
(2)$t=tan\dfrac{\theta}{2}$とするとき,$\sin\theta,\cos\theta,\tan\theta$をtを用いて表せ.
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、 tanBtanC=1 であるとき、この三角形は∠Aが直角である直角三角形であることを証明せよ。
この動画を見る 

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の1三角関数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 1ラジアンとは、㋐のことである。
  ㋐に当てはまるものを、次の⓪~③のうちから一つ選べ。

  ⓪半径が1、面積が1の扇形の中心角の大きさ
  ①半径がx、面積が1の扇形の中心角の大きさ
  ②半径が1、張の長さが1の扇形の中心角の大きさ
  ③半径がx、弧の長さが1の扇形の中心角の大きさ


(2) 144°を弧度で表すと$\displaystyle \frac{㋑}{㋒}$xラジアンである。
  また、$\displaystyle \frac{23}{12}$xラジアンを度で表すと[エオカ]である。


(3) $\displaystyle \frac{x}{2}$≦θ≦xの範囲で2sin(θ+$\displaystyle \frac{π}{5}$)-2cos(θ+$\displaystyle \frac{π}{30}$=1を満たすθの値を求めよう。
  x=θ+$\displaystyle \frac{π}{5}$とおくと、①は2sin x-2cos(x-$\displaystyle \frac{π}{㋖}$=1と表せる。
  加法定理を用いると、この式はsin x-$\sqrt{ ㋗ }$cos x=1となる。

  さらに、三角関数の合成を用いるとsin(x-$\displaystyle \frac{π}{㋘}$)=$\displaystyle \frac{1}{㋙}$と変形できる。
  x=θ+$\displaystyle \frac{π}{5}$、$\displaystyle \frac{π}{2}$≦θ≦πだから、θ=$\displaystyle \frac{㋚㋛}{㋜㋝}$πである。
この動画を見る 
PAGE TOP