【数Ⅲ】【積分とその応用】面積1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積1 ※問題文は概要欄

問題文全文(内容文):
次の曲線や直線で囲まれた図形の面積を求めよ。
(1)$y=xe^{1-x}$,$y=xe^{x-1}$
(2)$y=x^2$,$y=xe^{1-x}$
(3)$y=e^x$,$y=e^{3x}$,$y=e^{2-x}$
(4)$y=(x-e)logx$,$y=0$
(5)$y=sinx$,$y=sin2x(0 \leqq x \leqq 2π)$
チャプター:

0:00 オープニング
0:05 (1)解説
2:18 (2)解説
4:26 (3)解説
6:44 (4)解説
8:42 (5)解説
10:29 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた図形の面積を求めよ。
(1)$y=xe^{1-x}$,$y=xe^{x-1}$
(2)$y=x^2$,$y=xe^{1-x}$
(3)$y=e^x$,$y=e^{3x}$,$y=e^{2-x}$
(4)$y=(x-e)logx$,$y=0$
(5)$y=sinx$,$y=sin2x(0 \leqq x \leqq 2π)$
投稿日:2025.03.17

<関連動画>

重積分⑧-6 #155 【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
この動画を見る 

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^3} (3x^2+1)log\ x\ dx$

出典:2022年茨城大学
この動画を見る 

【高校数学】埼玉大学の積分の問題をその場で解説しながら解いてみた!毎日積分93日目~47都道府県制覇への道~【㊱埼玉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【埼玉大学 2017】
関数$f(x)$は微分可能で
$\displaystyle f(x)=x^2e^{-x}+\int_0^xe^{t-x}f(t)dt$
を満たすものとする。次の問いに答えよ。
(1) $f(0),f'(0)$を求めよ。
(2) $f'(x)$を求めよ。
(3) $f(x)$を求めよ。
この動画を見る 

#電気通信大学2015#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^9 dx$

出典:2015年電気通信大学
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP