【数C】【複素数平面】複素数と図形7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形7 ※問題文は概要欄

問題文全文(内容文):
原点を${\rm {O}}, \alpha=2-i,\beta=3+(2a-1)i$を表す点をそれぞれ$\rm A,B$とするとき、$\rm \angle AOB=\dfrac\pi4$を満たす実数$a$の値を求めよ。
チャプター:

0:00 オープニング
0:04 問題文確認
0:39 なぜ場合分けをするのか?
1:38 場合分けその1
3:45 場合分けその2
5:15 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点を${\rm {O}}, \alpha=2-i,\beta=3+(2a-1)i$を表す点をそれぞれ$\rm A,B$とするとき、$\rm \angle AOB=\dfrac\pi4$を満たす実数$a$の値を求めよ。
投稿日:2025.03.09

<関連動画>

【高校数学】 数B-50 座標空間における図形①

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点$A(8,-7,5),B(-2,3,-5),C(3,-2,-3)$に体して,
次の各点の座標を求めよう.

①線分$AB$を$3:2$に内分する点

②線分$AC$を$2:3$に外分する点

③線分$AB$の中点

④$\triangle ABC$の重心
この動画を見る 

複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における半直線のなす角を考える
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$

$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$

これらを求めよ。

産業医科大過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$a,b,c$に対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$f(0),f(1),f(i)$がいずれも1以上2以下の実数であるとき、$f(2)$のとりうる範囲を複素数平面上に図示せよ。
この動画を見る 
PAGE TOP