【数Ⅲ】【微分とその応用】関数のグラフ4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数のグラフ4 ※問題文は概要欄

問題文全文(内容文):
1.関数$y=-x^3+3x^2$のグラフはただ1つの変曲点をもち、
その点に関して対象であることを示せ。
2.関数$y=x^3+3ax^2+3bx+c$は$x=1$で極小となり、
点$(0,3)$はそのグラフの変曲点である。定数$a,b,c$の値を求めよ。
3.右の図は、関数$y=ax^3+bx^2+cx+d~~(0< x <5)$のグラフで、
$x=2$で極大、$x=4$で極小となり、点$(3,5)$は変曲点である。
定数$a,b,c,d$を求めずに、次のものを求めよ。
(1) $y' > 0$となる$x$の値の範囲
(2) $y'' > 0$となる$x$の値の範囲
(3) $y'$が最小となる$x$の値
チャプター:

0:00 オープニング
0:03 問題概要
0:26 1番解説
1:27 対称移動→中点を考える
3:30 2番解説
4:45 3番解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.関数$y=-x^3+3x^2$のグラフはただ1つの変曲点をもち、
その点に関して対象であることを示せ。
2.関数$y=x^3+3ax^2+3bx+c$は$x=1$で極小となり、
点$(0,3)$はそのグラフの変曲点である。定数$a,b,c$の値を求めよ。
3.右の図は、関数$y=ax^3+bx^2+cx+d~~(0< x <5)$のグラフで、
$x=2$で極大、$x=4$で極小となり、点$(3,5)$は変曲点である。
定数$a,b,c,d$を求めずに、次のものを求めよ。
(1) $y' > 0$となる$x$の値の範囲
(2) $y'' > 0$となる$x$の値の範囲
(3) $y'$が最小となる$x$の値
投稿日:2025.03.05

<関連動画>

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の各問いに答えよ。
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。
(2)$x≠0$を満たすすべての実数xに対して、$e^x \gt 1+x$と$e^{-x^2} \lt \frac{1}{1+x^2}$が
成り立つことを証明せよ。
(3)$\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}$が成り立つことを証明せよ。

2022北里大学医学部過去問
この動画を見る 

14和歌山県教員採用試験(数学:3番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
(i)$f`(x):$連続
(ii)$f(x)=\displaystyle \int_{1}^{x} (x-t)f`(t)dt+3x+1$
(iii)(ii)をみたす$f(x)$を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系098〜不等式の証明(5)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(5)
$b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)$を証明せよ。
この動画を見る 

【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。 
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
この動画を見る 

対数の近似値の求め方

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{246}$と$3^{144}$どちらが大きいか求めよ
この動画を見る 
PAGE TOP