福田のおもしろ数学338〜不定方程式の整数解 - 質問解決D.B.(データベース)

福田のおもしろ数学338〜不定方程式の整数解

問題文全文(内容文):
$a^2+b=b^{2025}$を満たす整数$a,b$を求めて下さい。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a^2+b=b^{2025}$を満たす整数$a,b$を求めて下さい。
投稿日:2024.12.05

<関連動画>

山口大 フェルマー素数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$n \geqq 0$,$F_n=2^{2^n}+1$とする.

(1)$F_{n+1}=F_0F_1F_2・・・・・・F_n+2$を示せ.
(2)$m\neq n$であり,$F_m$と$F_n$は互いに素を示せ.

2005山口大過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pが7以上の素数なら
$P^4-1$は240
の倍数であること
を示せ
この動画を見る 

答えは0個です。早稲田(商)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021$以下の正の整数で,すべての約数の和が奇数であるものの個数を求めよ.

2021早稲田(商)
この動画を見る 

高校入試の難しい整数問題  奈良学園

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
①~④をすべて満たす自然数a,b,c,dを求めよ。
①acd=720
②bcd=1512
③aとbの最大公約数は3である
④c+d=10(c$\geqq$d)

奈良学園高等学校
この動画を見る 

合同式 千葉大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.$x^2=7^{2n}(y^2+10z^2)$である.

(1)平方数を3で割った余りは0か1であることを示せ.
(2)$yz$は3の倍数であることを示せ.
(3)$y,z$が共に素数のとき,$x$を$n$を用いて表せ.

2003千葉大過去問
この動画を見る 
PAGE TOP