微分方程式⑧-1【非同次2階微分方程式の公式】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式⑧-1【非同次2階微分方程式の公式】(高専数学、数検1級)

問題文全文(内容文):
非同次2階微分方程式の公式を解説していきます.
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式の公式を解説していきます.
投稿日:2020.12.23

<関連動画>

福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(2)
極限値
$\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}$
を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.4次関数$y=f(x)$のグラフの2つの変曲点の座標は
$(-1,1),(1,8)$であり、点$(1,8)$における接線は
直線$y=x$に平行である。関数$f(x)$を求めよ。
2.$a$は定数とする。
曲線$y=(x^2+2x+a)e^x$の変曲点の個数を調べよ
この動画を見る 

【演習!】複雑な関数の最大値と最小値の求め方について解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
関数$f(x)=x-\sin 2x$における最大値と最小値を求めよ
この動画を見る 

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数と微分の表し方 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数について, $\frac{ dy }{ dx }$ を求めよ。ただし (1)(2)では $y$ を用いて表してもよい。また(3)(4)では、t$$ の関数として表せ。$a,b$は正の定数とする。

$x²+3xy-y²=1$

$x$の関数 $y$ が、$t$ を媒介変数として $x=cost +tsint, y= sint - tcost$ と表せるとき、$\frac{ d^2 y }{ dx^2 }$ を$ t $の関数として表せ。
この動画を見る 
PAGE TOP