問題文全文(内容文):
$\boxed{2}$ $S_n=\left(\dfrac{n}{6}(n+1)(2n+1)\right)^2$
(1)一般項$a_n$を求めよ.
(2)$\displaystyle \sum_{k=1}^n k^5$を求めよ.
$\boxed{2}$ $S_n=\left(\dfrac{n}{6}(n+1)(2n+1)\right)^2$
(1)一般項$a_n$を求めよ.
(2)$\displaystyle \sum_{k=1}^n k^5$を求めよ.
単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$ $S_n=\left(\dfrac{n}{6}(n+1)(2n+1)\right)^2$
(1)一般項$a_n$を求めよ.
(2)$\displaystyle \sum_{k=1}^n k^5$を求めよ.
$\boxed{2}$ $S_n=\left(\dfrac{n}{6}(n+1)(2n+1)\right)^2$
(1)一般項$a_n$を求めよ.
(2)$\displaystyle \sum_{k=1}^n k^5$を求めよ.
投稿日:2020.12.28





