【数C】【ベクトルの内積】ベクトルa=(1,1),b=(1,-1),c=(1,2)に対して,(xa+yb)⊥c,|xa+yb|=2√5であるように,実数x,yの値を求めよ。 - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】ベクトルa=(1,1),b=(1,-1),c=(1,2)に対して,(xa+yb)⊥c,|xa+yb|=2√5であるように,実数x,yの値を求めよ。

問題文全文(内容文):
ベクトル $\vec{a}=(1,1), \vec{b} = (1,-1), \vec{c} = (1,2)$ に対して、
$(x \vec{a} + y \vec{b}) \perp \vec{c}, |x \vec{a}+ y \vec{b}| = 2 \sqrt{5}$ であるように、
実数$x,y$ の値を定めよ。
チャプター:

0:00 オープニング、問題概要
0:21 絶対値はとりあえず2乗、垂直は内積が0
1:21 2つ目の条件から立式
1:46 座標が与えられている場合の内積計算
2:27 2次式を含む連立方程式の解法
2:56 答え

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトル $\vec{a}=(1,1), \vec{b} = (1,-1), \vec{c} = (1,2)$ に対して、
$(x \vec{a} + y \vec{b}) \perp \vec{c}, |x \vec{a}+ y \vec{b}| = 2 \sqrt{5}$ であるように、
実数$x,y$ の値を定めよ。
投稿日:2025.06.05

<関連動画>

高専数学 微積II #50(3)(4) 曲面の接平面の方程式

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
次の曲面上の点における接平面の方程式を求めよ.

(3)$z=\sin(x^-2-y^2)$
$x=1,y=1$
(4)$z=\log(x^2+y^2)$
$x=1,y=0$
この動画を見る 

【数C】ベクトルの基本⑪平面ベクトルのときの三角形の面積の計算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1),B(3,0),C(2,4)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

【数B】ベクトル:ベクトルの基本⑰2直線のなす鋭角を求める

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線$\sqrt3 x+3y-1=0, -x+\sqrt3 y-2=0$のなす鋭角$\alpha$を求めよ
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第2問(2)〜円のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(2)平面上の異なる$2$点$A(\overrightarrow{a}),B(\overrightarrow{b})$に対して、

ベクトル方程式

$2 \vert \overrightarrow{p}-\overrightarrow{a}=\vert \overrightarrow{p}-\overrightarrow{b}\vert$

を満たす点$P(\overrightarrow{p})$全体の集合は円となる。

この円の中心の位置ベクトルは$\boxed{サ}$で半径は

$\boxed{シ}$となる。

ただし、$\boxed{シ}$では根号を用いない表記とすること。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【高校数学】 数B-53 空間における平面・直線の方程式①

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる円の半径が
$3\sqrt3$であるとき,$a$の値を求めよう.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 
PAGE TOP