06滋賀県教員採用試験(数学:1-(3) 関数のグラフ) - 質問解決D.B.(データベース)

06滋賀県教員採用試験(数学:1-(3) 関数のグラフ)

問題文全文(内容文):
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
投稿日:2021.07.15

<関連動画>

【数Ⅲ】【関数と極限】次の数列が収束するような実数xの値の範囲を極限を求めよ。(1) {(x/1+2x)^n}(2) {x(x²-5x+5)^n-1}

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数列が収束するような実数xの値の範囲を極限を求めよ。
(1) { $\dfrac{x}{1+2x}^n$ }

(2) { $x(x²-5x+5)^{n-1}$ }
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 

福田のわかった数学〜高校3年生理系013〜極限(12)無限等比級数とグラフ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(13)
$x≠-1$とする。
$x+\displaystyle \frac{x}{1+x}+$$\displaystyle \frac{x}{(1+x)^2}+$$\displaystyle \frac{x}{(1+x)^3}+\cdots$

が収束する$x$の範囲を求めよ。このとき、
その和$f(x)$のグラフを描け。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第3問〜接線が作る三角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線y=$\frac{1}{x^2}$ (x $\ne$ 0)をCとする。$a_1$を正の実数とし、点$A_1$$\left(a_1, \frac{1}{a_1^2}\right)$におけるCの接線を$l_1$とする。$l_1$とCの交点で$A_1$と異なるものを$A_2$$\left(a_2, \frac{1}{a_2^2}\right)$とする。次に点$A_2$におけるCの接線を$l_2$とCの交点で$A_2$と異なるものを$A_3$$\left(a_3, \frac{1}{a_3^2}\right)$とする。以下、同様にしてn=3,4,5,...に対して、$A_n$$\left(a_n, \frac{1}{a_n^2}\right)$におけるCの接線を$l_n$とし、$l_n$とCの交点で$A_n$と異なるものを$A_{n+1}$$\left(a_{n+1}, \frac{1}{a_{n+1}^2}\right)$とする。
(1)$\frac{a_2}{a_1}$=$\boxed{\ \ あ\ \ }$であり、$\frac{a_3}{a_1}$=$\boxed{\ \ い\ \ }$である。
(2)$a_n$を$a_1$で表すと$a_n$=$\boxed{\ \ う\ \ }$である。無限級数$\displaystyle\sum_{n=1}^{\infty}a_n$の和をTを$a_1$を用いて表すとT=$\boxed{\ \ え\ \ }$である。
(3)$a_1$を正の実数すべてにわたって動かすとき、三角形$A_1A_2A_3$の重心が描く軌跡の方程式をy=f(x)の形で求めるとf(x)=$\boxed{\ \ お\ \ }$となる。
(4)三角形$A_1A_2A_3$が鋭角三角形になるための条件は$\boxed{\ \ か\ \ }$<$a_1$<$\boxed{\ \ き\ \ }$である。
(5)x軸上に2点$A'_1$($a_1$, 0), $A'_2$($a_2$, 0)をとり、台形$A_1A_2A'_2A'_1$の面積を$S_1$とする。また、点$A_1$から点$A_3$にいたる曲線Cの部分、および線分$A_3A_2$と$A_2A_1$で囲まれた図形の面積を$S_2$とする。このとき、$S_1$:$S_2$=$\boxed{\ \ く\ \ }$:$\boxed{\ \ け\ \ }$である。ただし、$\boxed{\ \ く\ \ }$と$\boxed{\ \ け\ \ }$は互いに素な自然数である。

2023慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#585「気付けば暗算」 同志社大学(2004) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ n }\sin(\displaystyle \frac{1}{n})\}\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{\sqrt{ n+k }}$

出典:2004年同志社大学 入試問題
この動画を見る 
PAGE TOP