福田のおもしろ数学296〜フェルマーの最終定理とは何か。与えられた不等式を満たす数列の1との大小関係 - 質問解決D.B.(データベース)

福田のおもしろ数学296〜フェルマーの最終定理とは何か。与えられた不等式を満たす数列の1との大小関係

問題文全文(内容文):
0以上の整数$a, b, c$が$a+b+c=300, a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=6,000,000$を満たしている。そのような$(a, b, c)$の組の個数を求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上の整数$a, b, c$が$a+b+c=300, a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=6,000,000$を満たしている。そのような$(a, b, c)$の組の個数を求めよ。
投稿日:2024.10.24

<関連動画>

整数部分 2024灘高校の最初の1問

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {15} + \sqrt{10} $の整数部分は?
灘高等学校2024
この動画を見る 

合同式 数学的帰納法 東工大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
この動画を見る 

筑波大附属の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
8a=5bを満たす自然数a,bの中で積abが100の倍数となる最も小さいaは?

筑波大学附属高等学校
この動画を見る 

複号任意

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$73=m^2+n^2$となる整数m,nの組をすべて求めよ
この動画を見る 

【数学A/整数】最大公約数と最小公倍数を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
120と252の最大公約数と最小公倍数を求めよ。
この動画を見る 
PAGE TOP