【高校数学】 数B-47 位置ベクトルと図形③ - 質問解決D.B.(データベース)

【高校数学】 数B-47 位置ベクトルと図形③

問題文全文(内容文):
①3点$A(4,3,a),B(2,-1,5),C(5,b,-13)$が一直線上にあるように
$a,b$の値を定めよう.

②4点$A(5,2,5),B(3,1,2),C(-2,-1,-6),D(a,2,3)$が同じ平面上にあるように
定数$a$の値を定めよう.
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3点$A(4,3,a),B(2,-1,5),C(5,b,-13)$が一直線上にあるように
$a,b$の値を定めよう.

②4点$A(5,2,5),B(3,1,2),C(-2,-1,-6),D(a,2,3)$が同じ平面上にあるように
定数$a$の値を定めよう.
投稿日:2016.01.12

<関連動画>

【数B】平面ベクトル:ベクトルの基本② ベクトルの大きさ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの大きさの求め方に関して解説していきます.
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$のどの
2つのなす角も$\frac{\pi}{3}$であるとする。
(1)$\overrightarrow{ OF }$を$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$を用いて表すと、
$\overrightarrow{ OF }= \boxed{き}$である。
(2)$|\overrightarrow{ OF }|,\ \cos \angle AOF$を求めると$|\overrightarrow{ OF }|= \boxed{く},$
$\ \cos \angle AOF=\boxed{け}$である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積は$\boxed{こ}$である。
(4)対角線OF上に点Pをとり、$|\overrightarrow{ OP }|=t$とおく。点Pを通り、$\overrightarrow{ OF }$に垂直な平面
をHとする。平行六面体$OABC-DEFG$を平面Hで切った時の断面が六角形
となるようなtの範囲は$\boxed{さ}$である。このとき、平面Hと辺AEの交点をQ
として、$|\overrightarrow{ AQ }|$をtの式で表すと$|\overrightarrow{ AQ }|=\boxed{し}$である。
また、$|\overrightarrow{ PQ }|^2$を$t$の式で表すと
$|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{す}$
である。
(5)平行六面体$OABC-DEFG$を、直線OFの周りに1回転してできる回転体
の体積は$\boxed{こ}$である。

2022明治大学理工学部過去問
この動画を見る 

【数学B/平面ベクトル】ベクトルの成分表示と大きさ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
動画内の図のベクトル$\vec{ a },\vec{ b },\vec{ c },\vec{ d },\vec{ e }$を成分で表し、それぞれ大きさを求めよ
この動画を見る 

【高校数学】 数B-19 ベクトルの内積⑧

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=3、\vec{ a }・\vec{ b }=-3$のとき、$P=| \vec{ a } + t \vec{ b } |$を最小にする実数tの値と、 そのときの最小値を求めよう。

②不等式$| \vec{ a } ・\vec{ b }| \leqq | \vec{ a } || \vec{ b } |$を証明しよう。
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

(1)$\triangle ABC$において$AB=6,AC=4,$

$\cos A=\dfrac{1}{4}$とする。

$\triangle ABC$の外心を$H$とし、直線$AH$が

$\triangle ABC$の外接円と交わる点のうち、

点$A$とは異なる点を$P$とする。

このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。

(2)$\triangle ABC$において$AB=5,AC=6,$

$\cos A=\dfrac{1}{5}$とする。

$\triangle ABC$の内心を$K$とし、

直線$AK$が$\triangle ABC$の内接円と

交わる点のうち、点$A$に近いほうの点を

$Q$とする。

このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 
PAGE TOP