【高校数学】 数A-65 約数と倍数① - 質問解決D.B.(データベース)

【高校数学】 数A-65 約数と倍数①

問題文全文(内容文):
ある整数が次の数の倍数かどうかを調べる判定法は・・・
$\boxed{3}$→①各位の数の$\quad$が$\quad$の倍数
$\boxed{4}$→②下$\quad$桁が$\quad$の倍数
$\boxed{6}$→2の倍数かつ3の倍数
$\boxed{8}$→③下$\quad$桁が$\quad$の倍数
$\boxed{9}$→④各位の数の$\quad$が$\quad$の倍数

⑤$12564$は,$2,3,4,5,6,8,9$のうち,どの数の倍数であるか答えよう.

⑥$a,b$は整数とする.
$a,b$が7の倍数ならば,$2a+3$は7の倍数であることを証明しよう.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ある整数が次の数の倍数かどうかを調べる判定法は・・・
$\boxed{3}$→①各位の数の$\quad$が$\quad$の倍数
$\boxed{4}$→②下$\quad$桁が$\quad$の倍数
$\boxed{6}$→2の倍数かつ3の倍数
$\boxed{8}$→③下$\quad$桁が$\quad$の倍数
$\boxed{9}$→④各位の数の$\quad$が$\quad$の倍数

⑤$12564$は,$2,3,4,5,6,8,9$のうち,どの数の倍数であるか答えよう.

⑥$a,b$は整数とする.
$a,b$が7の倍数ならば,$2a+3$は7の倍数であることを証明しよう.
投稿日:2016.05.23

<関連動画>

合同式と組み合わせの公式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{30} \mathrm{ C }_{15}$を31で割った余りを求めよ.
この動画を見る 

弘前大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ

出典:2010年弘前大学 過去問
この動画を見る 

大阪桐蔭 整数問題 定番

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1~50のすべての整数をかけた数は5で何回まで割り切れるか?

大阪桐蔭高等学校
この動画を見る 

開成高校 整数問題 最大公約数・最小公倍数

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ

出典:開成高等学校 過去問
この動画を見る 

ただの因数分解と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#式の計算(整式・展開・因数分解)#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①因数分解せよ.
$(x-2)(x-1)(x+1)(x+2)+2$

②$n^5-5n^3+5n+7$が120の倍数となる自然数nを一つ求めよ.
この動画を見る 
PAGE TOP