問題文全文(内容文):
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
投稿日:2024.10.08





