京大の不等式の証明問題!3通りで解いてみました【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

京大の不等式の証明問題!3通りで解いてみました【京都大学】【数学 入試問題】

問題文全文(内容文):
0<x(1-x²)√x/2が成り立つことを証明せよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
0<x(1-x²)√x/2が成り立つことを証明せよ。
投稿日:2024.12.09

<関連動画>

意外と差がつく!互いに素の証明!できるようになっておきたい【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nは正の整数とする。n^2と2n+1は互いに素であることを示せ。
この動画を見る 

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(2)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2)$\log_{10}x+2\log_{10}y$の最大値
  (3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
この動画を見る 

福田の数学〜明治大学2024理工学部第1問(3)〜x軸まわりとy軸まわりの回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線 $y=e^x$ を $C$ とする。
(a) 曲線 $C$ と $x$ 軸および $2$ 直線 $x=0,x=\log 2$ で囲まれた部分を、 $x$ 軸のまわりに $1$ 回転してできる立体の体積は $\displaystyle \frac{\fbox{タ}}{\fbox{チ}}\pi$ である。
(b) 曲線 $C$ と $y$ 軸および直線 $y=e^3$ で囲まれた部分を、 $y$ 軸のまわりに $1$ 回転してできる立体の体積は $(\fbox{ツ}e^3-\fbox{テ})\pi$ である。

ただし、 $\log x$ は $x$ の自然対数を表し、 $e$ は自然対数の底である。
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第3問〜逆関数と定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

実数$x$に対して、関数

$f(x)=\dfrac{1}{3}x+\sqrt{\dfrac{1}{9}x^2+8}$

がある。ただし、定義域は$x\geqq 0$である。

$y=f(x)$の逆関数を$y=g(x)$とする。

(1)$g(x)$を求めると、$g(x)=\boxed{ナ}$であり、

$g(x)$定義域は$\boxed{ニ}$である。

(2)$\displaystyle \int_{2\sqrt2}^{4}g(x)dx$を求めると$\boxed{ヌ}$である。

(3)$\displaystyle \int_{0}^{3} f(x) dx$を求めると$\boxed{ネ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

山梨大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{1}{2}+\displaystyle \frac{\sqrt{ 3 }}{2}i$

$z^5+z^4+z^2+z+1$の値を求めよ。

出典:山梨大学 過去問
この動画を見る 
PAGE TOP