問題文全文(内容文):
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
投稿日:2024.12.06





