問題文全文(内容文):
$x\gt 0,y\gt 0$のとき、
$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$
の最大値を求めて下さい。
*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
$x\gt 0,y\gt 0$のとき、
$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$
の最大値を求めて下さい。
*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$x\gt 0,y\gt 0$のとき、
$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$
の最大値を求めて下さい。
*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
$x\gt 0,y\gt 0$のとき、
$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$
の最大値を求めて下さい。
*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
投稿日:2025.01.31





