問題文全文(内容文):
$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から
異なる$k$個を選んで作った積の総和を$s(k)$とする。
$s(2)+s(4)+s(6)+\cdots +s(2024)$
の値を求めて下さい。
$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から
異なる$k$個を選んで作った積の総和を$s(k)$とする。
$s(2)+s(4)+s(6)+\cdots +s(2024)$
の値を求めて下さい。
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から
異なる$k$個を選んで作った積の総和を$s(k)$とする。
$s(2)+s(4)+s(6)+\cdots +s(2024)$
の値を求めて下さい。
$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から
異なる$k$個を選んで作った積の総和を$s(k)$とする。
$s(2)+s(4)+s(6)+\cdots +s(2024)$
の値を求めて下さい。
投稿日:2025.02.18





