福田のおもしろ数学414〜3辺の長さと内接円の直径で等差数列ができる三角形は直角三角形であることの証明 - 質問解決D.B.(データベース)

福田のおもしろ数学414〜3辺の長さと内接円の直径で等差数列ができる三角形は直角三角形であることの証明

問題文全文(内容文):

ある三角形の$3$辺の長さとその内接円の直径を

ある順序で並べると等差数列になるという。

この三角形が直角三角形であることを証明せよ。
   
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

ある三角形の$3$辺の長さとその内接円の直径を

ある順序で並べると等差数列になるという。

この三角形が直角三角形であることを証明せよ。
   
投稿日:2025.02.19

<関連動画>

福田の数学〜早稲田大学2024年理工学部第2問〜重複順列と連立漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とし、数1, 2, 4を重複を許して$n$個並べてできる$n$桁の自然数全体を考える。そのうちで3の倍数となるものの個数を$a_n$、3で割ると1余るものの個数を$b_n$、3で割ると2余るものの個数を$c_n$とする。
(1)$a_{n+1}$を$b_n$, $c_n$を用いて表せ。同様に$b_{n+1}$を$a_n$, $c_n$を用いて、$c_{n+1}$を$a_n$, $b_n$を用いて表せ。
(2)$a_{n+2}$を$n$と$c_n$を用いて表せ。
(3)$a_{n+6}$を$n$と$a_n$を用いて表せ。
(4)$a_{6m+1} (m=0,1,2,...)$を$m$を用いて表せ。
この動画を見る 

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 

大学入試問題#105 京都大学(2003) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_n \gt 0,\ a_1=1$
$n \geqq 2$のとき
$log\ a_n-log\ a_{n-1}=log(n-1)-log(n+1)$である。
$\displaystyle \sum_{k=1}^n a_k$を求めよ

出典:2003年京都大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

2重階乗 中央大附属 (誘導は動画内あり)動画の最後に。。。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nに対して $n! = n×(n-1)×(n-2)× \cdots ×3×2×1$
正の偶数mに対して$m!!= mx(m-2)×(m-4)× \cdots ×6×4×2$
(例)6!=6×5×4×3×2×1 , 6!! = 6×4×2
$(2k)!!$を$k!$を用いて表せ
(k:自然数)

2023中央大学付属高等学校 (改)
この動画を見る 
PAGE TOP