問題文全文(内容文):
$2025^2+2026^2+2027^2+\cdots + n^2$
$n\gt 2025$を満たす自然数$n$で
上の式の「$+$」をいくつか「$-$」に置き換えることで
式の値を$9999$にできるものが存在することを
示して下さい。
$2025^2+2026^2+2027^2+\cdots + n^2$
$n\gt 2025$を満たす自然数$n$で
上の式の「$+$」をいくつか「$-$」に置き換えることで
式の値を$9999$にできるものが存在することを
示して下さい。
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2025^2+2026^2+2027^2+\cdots + n^2$
$n\gt 2025$を満たす自然数$n$で
上の式の「$+$」をいくつか「$-$」に置き換えることで
式の値を$9999$にできるものが存在することを
示して下さい。
$2025^2+2026^2+2027^2+\cdots + n^2$
$n\gt 2025$を満たす自然数$n$で
上の式の「$+$」をいくつか「$-$」に置き換えることで
式の値を$9999$にできるものが存在することを
示して下さい。
投稿日:2025.02.28





