福田のおもしろ数学445〜関数方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学445〜関数方程式

問題文全文(内容文):

正の実数の集合を$R^{+}$と表す。

$f:R^{+}→R^{+}$が任意の$x,y \in R^{+}$に対し

$y^2f(x)=f\left(\dfrac{x}{y}\right)$を満たしている。

このような$f(x)$をすべて求めなさい。
   
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

正の実数の集合を$R^{+}$と表す。

$f:R^{+}→R^{+}$が任意の$x,y \in R^{+}$に対し

$y^2f(x)=f\left(\dfrac{x}{y}\right)$を満たしている。

このような$f(x)$をすべて求めなさい。
   
投稿日:2025.03.22

<関連動画>

11和歌山県教員採用試験(数学:4番 微分と微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f(x)$:微分可能
任意の実数$x,y$に対して
$f(x+y)=f(x),f(y),f`(0)=2$

(1)$f(0)$を求めよ.
(2)$f(x)$を求めよ.
この動画を見る 

10奈良県教員採用試験(数学:6番 微分・微分方程式)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
6⃣$f(x+y)=f(x)f(y),f'(0)a≠0$
(1)f(0)を求めよ。
(2)y=f(x)は微分可能を」示し、関数f(x)を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の漸近線の方程式を求めよ。
(1) $y=\dfrac{x}{\sqrt{x^2+1}}$
(2) $y=2x+\sqrt{x^2-1}$
この動画を見る 

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(13)

$y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)$
のグラフを描け。凹凸、漸近線を調べよ。
この動画を見る 
PAGE TOP