福田の数学〜慶應義塾大学薬学部2025第1問(4)〜円柱を切ってできる立体の体積と側面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第1問(4)〜円柱を切ってできる立体の体積と側面積

問題文全文(内容文):

$\boxed{1}$

(4)$xyz$空間において、

$xy$平面上に$(0,0,0)$を中心とする半径$2$の円がある。

この円と、$(0,0,2\sqrt3)$を中心とする半径$2$の円を

底面とする円柱を、

原点を通り$xz$平面と$30$度の角をなす平面によって

切断し、$2$つの立体に分ける。

いま$2$つの立体のうち、

体積の小さい方の立体について考える。

その立体の体積を$V$、切り口の面積を$S_1$、

円柱の側面であった部分の面積を$S_2$とする。

(i)$V=\boxed{ケ}$

(ii)$S_1=\boxed{コ},S_2=\boxed{サ}$である。
    
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立体図形#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$xyz$空間において、

$xy$平面上に$(0,0,0)$を中心とする半径$2$の円がある。

この円と、$(0,0,2\sqrt3)$を中心とする半径$2$の円を

底面とする円柱を、

原点を通り$xz$平面と$30$度の角をなす平面によって

切断し、$2$つの立体に分ける。

いま$2$つの立体のうち、

体積の小さい方の立体について考える。

その立体の体積を$V$、切り口の面積を$S_1$、

円柱の側面であった部分の面積を$S_2$とする。

(i)$V=\boxed{ケ}$

(ii)$S_1=\boxed{コ},S_2=\boxed{サ}$である。
    
投稿日:2025.04.10

<関連動画>

高校数学:数学検定準1級1次:問題5 :部分積分

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^2 (\frac{x^2}{2}+3x)e^{\frac{x}{2}} dx$

不定積分、定積分を求めよ
この動画を見る 

大学入試問題#778「ウォリス積分なら一撃」 横浜国立大学(1994) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^3\theta\ \cos2\theta\ d\theta$

出典:1994年横浜国立大学 入試問題
この動画を見る 

福田のおもしろ数学548〜無理関数の不定積分

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

不定積分$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\dfrac{1}{\cos\theta}$と

置き換えて求めて下さい。
    
この動画を見る 

大学入試問題#770「減点注意!」 千葉大学(2003) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a$は定数とし、$n$は2以上の整数とする。
関数$f(x)=ax^n log\ x-ax(x \gt 0)$の最小値が-1のとき、定積分$\displaystyle \int_{1}^{e} f(x)\ dx$の値を$n$と$e$を用いて表せ。

出典:2003年千葉大学 入試問題
この動画を見る 

大学入試問題#333 青山学院大学(2013) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{log\ a}\displaystyle \frac{e^x}{e^x+a}dx$

出典:2013年青山学院大学 入試問題
この動画を見る 
PAGE TOP