福田の数学〜慶應義塾大学薬学部2025第3問〜逆関数と定積分 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第3問〜逆関数と定積分

問題文全文(内容文):
$\boxed{3}$

実数$x$に対して、関数

$f(x)=\dfrac{1}{3}x+\sqrt{\dfrac{1}{9}x^2+8}$

がある。ただし、定義域は$x\geqq 0$である。

$y=f(x)$の逆関数を$y=g(x)$とする。

(1)$g(x)$を求めると、$g(x)=\boxed{ナ}$であり、

$g(x)$定義域は$\boxed{ニ}$である。

(2)$\displaystyle \int_{2\sqrt2}^{4}g(x)dx$を求めると$\boxed{ヌ}$である。

(3)$\displaystyle \int_{0}^{3} f(x) dx$を求めると$\boxed{ネ}$である。

$2025$年慶應義塾大学薬学部過去問題
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

実数$x$に対して、関数

$f(x)=\dfrac{1}{3}x+\sqrt{\dfrac{1}{9}x^2+8}$

がある。ただし、定義域は$x\geqq 0$である。

$y=f(x)$の逆関数を$y=g(x)$とする。

(1)$g(x)$を求めると、$g(x)=\boxed{ナ}$であり、

$g(x)$定義域は$\boxed{ニ}$である。

(2)$\displaystyle \int_{2\sqrt2}^{4}g(x)dx$を求めると$\boxed{ヌ}$である。

(3)$\displaystyle \int_{0}^{3} f(x) dx$を求めると$\boxed{ネ}$である。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.13

<関連動画>

福田のわかった数学〜高校3年生理系017〜関数の極限、無理関数の極限(2)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(2)
$\lim_{x \to 1}\displaystyle \frac{\sqrt[3]x-1}{\sqrt x-1}$ を求めよ。
この動画を見る 

弘前大(医)3次方程式 極限 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#弘前大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
n自然数
$x^3+3nx^2-(3n+2)=0$
(1)全ての自然数nについて正の解をただ1つしかもたないことを示せ。
(2)各自然数nに対して正の解を$a_n$とする。
 $\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

大学入試問題#454「落とすと落ちる問題①」 横浜国立大学 後期 2003 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \displaystyle \frac{dx}{\sin\ x+\sqrt{ 3 }\ \cos\ x}$

出典:2003年横浜国立大学 入試問題
この動画を見る 

原始ピタゴラス数を探せ

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
原始ピタゴラス数に関して解説していきます.
この動画を見る 

福田のわかった数学〜高校3年生理系007〜極限(7)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(7)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{n^2}{2^n}$を求めよ。
この動画を見る 
PAGE TOP